18.152 PROBLEM SET 1 due February 12th 9:30 am

You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. Let u(x,t) be the smooth solution to the following Cauchy-Neumann problem;

$$u_t(x,t) = u_{xx}(x,t), \quad for \ 0 \le x \le L, 0 \le t, u_x(0,t) = u_x(L,t) = 0, \quad for \ 0 \le t, u(x,0) = g(x), \quad for \ 0 \le x \le L,$$

where g(x) is smooth. Show the following inequality

$$\frac{d}{dt} \int_0^L |u_x(x,t)|^2 + |u_t(x,t)|^2 dx \le 0.$$

Problem 2. Let u(x,t) be the smooth solution to the following Cauchy-Neumann problem;

$$u_t(x,t) = u_{xx}(x,t), \quad for \ 0 \le x \le 1, 0 \le t, u_x(0,t) = u_x(1,t) = 0, \quad for \ 0 \le t, u(x,0) = g(x), \quad for \ 0 \le x \le 1,$$

where g(x) is smooth. Show that u(x,t) uniformly converges to the constant $\int_0^1 g(s) ds$ as $t \to +\infty$ by using the following steps.

(1) Show that

$$\int_0^1 |u_x(x,t)|^2 dx \le e^{-\frac{t}{2}} \int_0^1 |g'(x)|^2 dx$$

(2) Show that

$$\left| u(x,t) - \int_0^1 g(x) dx \right|^2 \le 4e^{-\frac{t}{2}} \int_0^1 |g'(x)|^2 dx.$$

Hint: Use Lemma 3 and Theorem 4 in lecture notes.

Problem 3. Show that the following Cauchy-Dirichlet problem has a unique smooth solution, and express the solution in exact form.

$$u_t(x,t) = u_{xx}(x,t), \quad for \ 0 \le x \le \pi, 0 \le t, u(0,t) = 0, u(\pi,t) = 2\pi, \quad for \ 0 \le t, u(x,0) = 2x + \sin x + \sin(2x), \quad for \ 0 \le x \le \pi.$$

Hint: Consider v(x,t) = u(x,t) - 2x.

Problem 4. Let u(x,t) be the smooth solution to the following Cauchy-Neumann problem;

$$u_t(x,t) = u_{xx}(x,t), \quad for \ 0 \le x \le L, 0 \le t, u_x(0,t) = u_x(L,t) = 0, \quad for \ 0 \le t, u(x,0) = g(x), \quad for \ 0 \le x \le L,$$

where g(x) is smooth.

(1) Show that

$$|u(x,t)| \le \max_{0 \le x \le L} |g(x,0)|.$$

(2) Show that the smooth function

$$w = \frac{t}{t+1} |u_x|^2 + \frac{1}{2}u^2$$

satisfies

$$w_t \le w_{xx}$$

for all
$$(x,t) \in [0,L] \times [0,+\infty)$$
.

(3) Establish an upper bound for $|u_x(x,t)|^2$ where t > 0 in terms of g and t.