18.152 PROBLEM SET 1

due February 12th 9:30 am
You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. Let $u(x, t)$ be the smooth solution to the following CauchyNeumann problem;

$$
\begin{aligned}
& u_{t}(x, t)=u_{x x}(x, t), \quad \text { for } 0 \leq x \leq L, 0 \leq t, \\
& u_{x}(0, t)=u_{x}(L, t)=0, \quad \text { for } 0 \leq t, \\
& u(x, 0)=g(x), \quad \text { for } 0 \leq x \leq L,
\end{aligned}
$$

where $g(x)$ is smooth. Show the following inequality

$$
\frac{d}{d t} \int_{0}^{L}\left|u_{x}(x, t)\right|^{2}+\left|u_{t}(x, t)\right|^{2} d x \leq 0
$$

Problem 2. Let $u(x, t)$ be the smooth solution to the following CauchyNeumann problem;

$$
\begin{aligned}
& u_{t}(x, t)=u_{x x}(x, t), \quad \text { for } 0 \leq x \leq 1,0 \leq t, \\
& u_{x}(0, t)=u_{x}(1, t)=0, \quad \text { for } 0 \leq t, \\
& u(x, 0)=g(x), \quad \text { for } 0 \leq x \leq 1,
\end{aligned}
$$

where $g(x)$ is smooth. Show that $u(x, t)$ uniformly converges to the constant $\int_{0}^{1} g(s) d s$ as $t \rightarrow+\infty$ by using the following steps.
(1) Show that

$$
\int_{0}^{1}\left|u_{x}(x, t)\right|^{2} d x \leq e^{-\frac{t}{2}} \int_{0}^{1}\left|g^{\prime}(x)\right|^{2} d x
$$

(2) Show that

$$
\left|u(x, t)-\int_{0}^{1} g(x) d x\right|^{2} \leq 4 e^{-\frac{t}{2}} \int_{0}^{1}\left|g^{\prime}(x)\right|^{2} d x .
$$

Hint: Use Lemma 3 and Theorem 4 in lecture notes.

Problem 3. Show that the following Cauchy-Dirichlet problem has a unique smooth solution, and express the solution in exact form.

$$
\begin{aligned}
& u_{t}(x, t)=u_{x x}(x, t), \quad \text { for } 0 \leq x \leq \pi, 0 \leq t \\
& u(0, t)=0, u(\pi, t)=2 \pi, \quad \text { for } 0 \leq t \\
& u(x, 0)=2 x+\sin x+\sin (2 x), \quad \text { for } 0 \leq x \leq \pi
\end{aligned}
$$

Hint: Consider $v(x, t)=u(x, t)-2 x$.

Problem 4. Let $u(x, t)$ be the smooth solution to the following CauchyNeumann problem;

$$
\begin{aligned}
& u_{t}(x, t)=u_{x x}(x, t), \quad \text { for } 0 \leq x \leq L, 0 \leq t, \\
& u_{x}(0, t)=u_{x}(L, t)=0, \quad \text { for } 0 \leq t, \\
& u(x, 0)=g(x), \quad \text { for } \quad 0 \leq x \leq L
\end{aligned}
$$

where $g(x)$ is smooth.
(1) Show that

$$
|u(x, t)| \leq \max _{0 \leq x \leq L}|g(x, 0)|
$$

(2) Show that the smooth function

$$
w=\frac{t}{t+1}\left|u_{x}\right|^{2}+\frac{1}{2} u^{2}
$$

satisfies

$$
w_{t} \leq w_{x x}
$$

for all $(x, t) \in[0, L] \times[0,+\infty)$.
(3) Establish an upper bound for $\left|u_{x}(x, t)\right|^{2}$ where $t>0$ in terms of g and t.

